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SUMMARY

In studying the possible capture of an astronomical body that

is orbiting around the sun, two questions are encountered: How

near must it approach the earth before it could be captured? How

could we make it approach as near to the earth as required?

This paper answers the first question by using the results of

the restricted three-body problem, and partially answers the sec-

ond question by estimating the order of magnitude of the velocity

modification needed to change the orbit of the body and make cap-

ture possible.
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VELOCITY MODIFICATION FOR EARTH

CAPTURE OF AN ASTRONOMICAL BODY

IN THE SOLAR SYSTEM*

by

Su-Shu Huang

Goddard Space Flisht Center

INTRODUCTION

One of the aims of a technological cil,ilization is to conquer nature. Concerning the

problems of conquering space we have already many projects such as the landing on the

surface of the moon and the probing of the planets. One rather fascinating undertaking

in space which has not been widely discussed, perhaps because of its heavy demands on

the performance of rockets, is to change the orbit of an asteroid or even of a comet so

that is becomes a permanent satellite of the earth.

The reshaping of the solar system requires a large amount of energy. It is evident

that we shall not have in the foreseeable future the means for modifying the orbit of the

earth in any appreciable degree because its large mass prevents the easy escape of

propelling material from its deep potential well. For this reason, what we can modify

is only the orbits of those astronomical bodies whose escape velocities are negligible,

viz., small asteroids and comets.

In considering the possible capture by the earth of any body that is orbiting around

the sun, two questions arise: How near must it approach the earth before it could be

captured? How could it be made to approach as near to the earth as required?

PROXIMITY REQUIRED FOR CAPTURE

The first question can be answered by using the results of the restricted three-body

problem (Reference 1) which, as has been pointed out before (Reference 2), provide

pertinent information concerning the general nature of the motion of a small mass in

STo be published also by the Astronomical Society of the Pacific.



the solar system, especially in the neighborhood of the earth. As an approximation we

may regard the motion of a small body in the earth-moon-sun system as two restricted

three-body problems. On a smaller scale, the earth and moon provide the two bodies

revolving around each other within whose gravitational field the small mass moves. On

the larger scale, the earth-plus-moon and the sun form a system of two finite bodies re-

volving around each other.

In a coordinate system rotating with the two finite bodies around their center of

mass, we have, in the standard dimensionless units (Reference 1) for the energy integral

of the motion of the third (infinitesimal) body in the restricted three-body problem, the

following form

V 2 = 2U -C
(1)

where C is a constant of motion, V is the velocity, and u is a function of the coordinates

given by

U ----_(x 2 + y2) + 1 - /_ + _ (2)
r I r 2

Here r 1 and r 2 are the distances of the infinitesimal body from the two finite bodies

whose masses are 1-_ and _ respectively, the unit of length being the separation of the

two finite bodies.

It follows from Equation 1 that for a given value of C which is determined by the

initial conditions alone, the velocity of the infinitesimal body becomes zero on a surface

given by

2u -- c (3)

which is therefore known as the zero-velocity surface through which the infinitesimal

body cannot penetrate (Reference 1). Thus, corresponding to each value of C there ex-

ists a zero-velocity surface. Among the one-parameter family of zero-velocity surfaces

there is one which limits the third body indefinitely to the neighborhood of one or the

other of the two finite bodies, and which has frequently been called the inner contact sur-

face of the system (Reference 3).

Figure 1 illustrates a part of the inner contact surface for the sun-(earth-plus-moon)

system by taking the sun and the center of mass of the earth-plus-moon system as

revolving around each other in circular orbits. It shows only the lobe that envelops the

earth-moon system, for the lobe enveloping the sun is too large to be drawn to scale.
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Figure 1 -- The inner contact surface, consisting of two lobes- one enveloping the earth, E, and another
enveloping the moon,M - of the earth-moonsystem enclosed in the lobe of the inner contact surface of the
sun- (earth-plus-moon) system. This figure illustrates the relative importanceof the effects of the sun, the
earth, and the moonon the motion of a small body in different regionsof space. The dotted lines indicate
how asteroids are captured inside the E-lobe.

Thus, with any value of C larger than that corresponding to the inner contact surface, an

infintesimal body will move permanently as a satellite of one or the other finite body.

If it falls originally within the lobe surrounding the earth-moon, it will remain inside

that lobe indefinitely. This, however, does not necessarily mean that it belongs to the

earth, because we have thus far treated the earth-moon system only as a single finite

body for large-scale motion of the third body.

In order to understand the behavior of the infinitesimal body near the earth-moon

system, we must consider another restricted three-body porblem, taking the earth and

the moon as two finite bodies revolving around each other in circular orbits. Corres-

ponding to this smaller system we can draw another inner contact surface which is com-

pletely shown in Figure 1 and which consists of a lobe surrounding the earth E (called



theE-lobein thefollowingdiscussion)anda lobesurroundingthemoonM. A satellite of
theearthhasto be insidetheE-lobe.

Herewearrive at theanswerto our first question: Anasteroidhasto enterthe E-
lobebeforeits capturecouldbeeffected. Actually, ashasbeenestimatedbefore(Ref-
erence2), in order to havea satellite revolvingaroundthe earthwhichdoesnot escape
in a time-scaleof the ageof the solar system,the satellite mustbe locatedabouthalfway
insidethe lobe.

Fewknownasteroidshaveever drifted into the E lobe. Three small asteroids
perhapsonlya kilometer or twoin diameterhavebeendiscoveredat close approaches
to theearth, i.e., at distancesof 1.05x 107km (Apollo), 2.4x 106km (Adonis),and
8 x 105km (Hermes)(Reference4), whichcorrespondto 0.070,0.016,and0.0054astronomi-
cal unit. TheE-lobe,as Figure 1shows,maybe regardedroughlyasa sphereof radius
0.0025astronomicalunit. Thus,noneof theseasteroidshaspenetratedtheE-lobeof the
inner contactsurfaceof theearth-moonsystem. However,Hermeswascloseto the
E-lobe. This faceindicatesthatwecanmodifytheorbits of somesmall asteroidsonly
slightly in order to bring theminto the lobe.

Thus,wemaysuggestthat twostepsin changingthevelocity of anasteroidmustbe
takenin order to effect its capture. In thefirst step,whichtakesplacewhenit is outside
theE-lobe,its velocity shouldbesomodifiedthat it will moveinto theE-lobe. In the
secondstep,whichtakesplacewhenit is alreadyinsidetheE-lobe, its velocity should
beagainmodifiedsothat afterwardsit will orbit around the earth permanently.

To find the most efficient procedure for capturing a particular asteroid poses a

challenging problem to the worker in celestial mechanics; in what follows we attempt

only to give an order-of-magnitude estimate of the velocity modification needed for such

an undertaking, and thus to determine whether this kind of undertaking is feasible and

within our technological reach in the near future (say 25 years).
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VELOCITY MODIFICATION REQUIRED

FOR PENETRATING THE E-LOBE

Let us first consider the problem of altering the orbit of an asteroid such that it

could enter the E-lobe sometime later. Assume the original orbit of the asteroid to be

circular with radius a o. We shall consider only two special cases in order to see the

order of magnitude of the required change in velocity. Case 1: If the radius

of the orbit of the asteroid is originally greater than that of the earth, that iS, ao> 1,
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we consider the special case that after its velocity has been modified, the asteroid will

enter the E-lobe at its perihelion. Case 2: If a o< 1, we consider the special case that the

asteroid will enter the E-lobe at its aphelion.

Denoting by a 1 and e1 the semi-major axis and the eccentricity of the altered orbit,

we must have

sI(I - e,) : I (4)

in order that it could be captured at its perihelion by the earth. Choose a polar coordi-

nate system with the sun at the pole. If the velocity modification is affected at A(s o, _)

as in Figure 2a,

e I

_0 - 1

1 + so cos 0 (5)

Equations 4 and 5 determine a 1 and e I when a 0 is given. It is now an easy matter to

compute the difference in velocity of the asteroid on the circuit orbit (a01 and on the el-

liptical orbit (a 1, e 1) at Point A. The calculation is simple and straightforward with the

following result for the differences in velocity components:

1 -_ _a0 (11 - cos 8 )*/2_Vr - a01/2 +- ao cos 0 (6)

and

aVe- aol/2 1 + ao cos e_ - 1 . (7)

In the second special case (Figure 2b), we consider capture at the aphelion of its

modified orbit in the event a o < 1. Thus,

Sl(1 + e I ) = |.

The eccentricity of the modified orbit is then given by

(8)

1 - S O

_i : ' (9)
1 - a 0 cos
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Figure 2 -- Two special cases of modifying the velocity of an asteroid so that its modified orbit touches the
orbit of the earth. The two circles in each diagram represent the orbit of the earth (EE) and the original orbit
of the asteroid which is, in (a), outside the earth's orbit and, in (b), insidethe earth's orbit. S is the sun and
A is the point at which the velocity modification (_V)is instantaneously applied. The ellipse shownby the
broken line is the modified orbit.
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and the differences in velocity components at A of the asteroid on the circular orbit (%)

and on the elliptical orbit ( a1 , e I ) are given by

1 - a0 ( 1 + cos _ t 1/2
_v, - _oI/_ \1 _o_S _ (10)

and

EI1coso/,/21.01/5 1 go cos e - 1 (ii)

The difference in velocity calculated in this way obviously represents the velocity

correction that has to be applied in order tobring the asteroid from a circular orbit into

an ellipticalorbit that touches the orbit of the earth.

Table 1 gives some numerical results derived from Equations 6-7 and 10-11 for

different values of _. From this table we can immediately see that in both cases the

most advantageous point at which the modification of velocity can be applied is the
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Table 1

The Eccentricity e 1 of the Modified Orbit and the Velocity Changes Required to

Bring the Asteroid into the E-Lobe

0

30

45

60

90

120

135

150

180

e I

0.024

0.026

0.029

0.033

0.050

0.11

0.19

0.55

a0 = 1.05

AVr

(lart/sec)

0

-0.38

-0.60

-0.84

-1.5

-2.6

-3.7

-6.6

-0.37

-0.34

-0.31

-0.23

0

+ .75

+1.9

+6.2

e I

1

0.28

0.15

0.09

0.05

0.034

0.O3O

0.027

0.026

ao = 0.95

/XVr

(Ion/see)

9.6

5.0

3.5

2.6

1.5

0.89

0.64

0.41

0

-31

- 4.2

- 1.6

-0.73

0

+0.27

+0.31

+0.37

+0.40

point where the asteroid is as far as possible from the point where it will actually enter

the E-lobe after velocity modification. In both the cases considered here, the optimum

velocity change amounts only to a fraction of one km/sec. Intuitively this conclusion is

self-evident because the orbit is least changed under this circumstance. Indeed, it is

familiar when we reflect upon the most efficient way, energywise, of sending a rocket

to Venus or Mars from the earth.

VELOCITY MODIFICATION REQUIRED FOR CAPTURE

Assume that an asteroid has already been moving along an orbit {al, el )which lies

in the same plane as the orbit of the earth and which could penetrate into the E-lobe of

the inner contact surface. Let us now investigate the modification velocity required to

keep itpermanently inside the lobe. We can easily find its velocity at any point on the

orbit in the frame of reference rotating with the earth-moon system around the sun, and

consequently determine the value of c in Equation i. When the asteroid is far away from

the earth-moon system, we can compute the value of C by neglecting _. Thus,

1 2(1 e_) 1/2C :- + - ai_/2. (12)



Since c is a constant of motion in the restricted three-body problem, we can derive the

velocity of the asteroid from Equations 1, 2, and 12 when it reaches a point inside the

E-lobe. Then _ in the term 2_/r 2 of Equation 2 can no longer be neglected, although we

may still set p=o in the term 2{ 1 - #)/r 1. Also, we may write

r12 = x2 + y2

to a better approximation. It is obvious that r 1 must be very near to unity. Conse-

quently the velocity v of the asteroid when it is inside the E-lobe is given by

2 2_u Ii+ )l/2al 1/2 l
Vl 2 = r12 ÷ -- + -- - 2 (1 - el 2 ' (13)

r I r 2 a 1

the effect of the moon being neglected in this order-of-magnitude calculation.

We shall consider only two special situations of capture, namely, that the earth and

the asteroid have the closest encounter (1) at the aphelion of the asteroid if ax < 1, or

(2) at its perihelion if a 1 > 1; and that its velocity is modified at this point of the closest

encounter. From Equation 13 it follows that, for the first case,

)lj j21 - e 1

v12 _ _ rc + I 1 2_ (14)r C _ r C [ '

while for the second case,

ol)Ij2j2_ re + 2p.
V12 = r c ]1 - rc]

(15)

where rc is the value of r1 at the point of velocity modification.

r c = al{1 + e 1 }

for the first instance and

Thus,

(16)

rc = ax(1 - ex} (17)

for the second. The last term in both Equations 14 and 15 represents the increase in

kinetic energy when the asteroid fails into the E-lobe as a result of the earth's attraction.
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On the other hand, the orbital velocity of a satellitearound the earth in the frame of

reference we refer to is given by

Vo- l'- roJ (18)

where a is the ratio of the mass of the earth to that of the sun. Therefore, the required

change in velocity 5V (inside the E-lobe) in order to capture the asteroid is between

I vl - Vol and Iv 1+ vo I • The actual value of AV depends upon the direction of the velocity

vectors, but apparently lies in most cases near the lower limit. The computed values of

v1 -v 0 and Vl +V0 in both cases are given in Table 2 for two different values of [1- r c I

which measures the size of the orbit around the earth after the asteroid has been cap-

tured. The case of ] 1- r c t = 0.00028 corresponds to making an asteroid an earth satel-

lite with a period of 24 hours, while the case I 1 - r c ]= 0.002 corresponds to an orbit near

to the E-lobe itself. The situation of e 1 =0 is not included in the table because the asteroid

would then move along the same orbit as that of the earth and consequently the two would

remain at a constant distance apart. Needless to say, the unit of velocity used here is the

orbital velocity of the earth around the sun, but we have converted it into km/sec in Tables

1 and 2 from which it is evident that the required change is not large.

Thus, we can capture the hypothetical asteroids ( 80 = 0.95, 1.05) considered here by

using a rocket which is able to change the asteroid's velocity by only one or two km/sec

in optimum circumstances. This value can be compared with 11 km/sec for the

Table 2

The Upper and Lower Limits of Velocity Changes Required to Bring an

Asteroid (in the E-Lobe) into Orbit Around the Earth

el

0.01

0.1

0.2

0.3

0.4

0.5

II- rc = 0.002

VI ¢ Vo Vi - Vo
(kin/see) (km/sec)

2.8 0.48

3.3 0.95

4.6 7.2

5.7 3.4

6.9 4.6

8.0 5.7

a > 1 a I 1

11- r ej 0.00028 I1- re = 0.002 .11- r el = 0.00028

V 1 + V 0

(krrt/sec)

VI - Vo
(kin/see)

1.3

1.5

2.2

3.0

3.9

4.9

V 1 +V 0

2.8

3.3

4.8

6.2

8.0

10.0

VI - Vo
(k_/sec)

0.48

0.95

2.5

3.9

5.7

7.7

V 1 + v 0

(kin/see)

7.4

7.6

8.5

9.6

11.0

12.9

7.4

7.6

8.4

9.2

10.1

11.0

V I - V o

(kin/see)

1.3

1.5

2.4

3.4

4.9

6.7
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escapevelocityfrom theearthandis indeedsmall astronomically. Butthe massof even
a small (one kilometer in radius) asteroid is of the order of 1016 grams, and the rocket

used to modify its velocity has to be lifted from the earth, although conceivably we may

be able to use material on the asteroid as ejecting matter. This proposed project would

require a major effort but, if realized, it would be a lasting mark of human achievement.

CONCLUDING REMARKS

We have illustrated by a few hypothetical examples that the necessary changes

in velocity for capturing an asteroid could be small. When time comes for ac-

tually carrying out the capture, the modification of velocity may not be applied at two

points in a short time interval as is assumed here. Instead, a low thrust applied for a

long time will most likely be used for steering an asteroid into an orbit around the earth.

The present examples only emphasize the feasibility of this kind of undertaking in view

of the small change in velocity necessary for its success. Therefore, the immediate

problem is to search for small asteroids that come naturally to within 0.05 astronomi-

cal unit or r 0 of the orbit of the earth. After its orbit is determined, an extensive calcu-

lation should then be carried out on a high-speed digital computer in order to determine

the most efficient way of capturing it. This will be a very interesting problem in celes-

tial mechanics.

If we put an asteroid one kilometer in radius into the 24-hour orbit, its apparent

photovisual magnitude in the full phase (when not in eclipse) will be

m = -2.23 - 2.5 Iog A (19)

where A is its albedo in the photovisual region and its angular diameter will be about 10

seconds of arc. Taking A = 0.1, which is of the order of magnitude of the albedo of the

moon, we have m : 0.27 mag. It would be as bright as the brightest stars in the sky.

Actually, because of the irregular shape and the rotation of the asteroid, the brightness

will fluctuate around this value.
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